EnergoAqua Eco Water Supplied Radiant Heating

Technical Information - EAE

INDEX

1 PRODUCT DESCRIPTION

1.1	Models, dimensions, weights, water contents	page 4
1.2	Construction	page 6
1.3	Production, modularity	page 6
1.4	Suspension brackets	page 6
1.5	Headers	page 6
1.6	Paint Insulation	page 6
1.7	Operating temperature	page o
1.8	Operating pressure	page 0
1.9	Special versions, accessories	page 6
1.10	Components of the EnergoAqua Eco radiant panel	page 8
2	DESIGN DATA	
2.1	Guidelines for a correct product choice	page 9
2.2	Active length	page 9
2.3	Thermal output	page 9
2.4	Corrective coefficients for high installation heights	page 14
2.5	Corrective coefficient for inclined panels	page 14
2.6	Distance between radiant panels	page 14
2.7	Minimum installation height	page 14
2.8	Positioning of ceiling mounted panels	page 15
2.9	Examples of calculation of radiant panels	page 16
2.10	Effects on luminosity originating from the ceiling covering	page 17
2.11	Use in cooling systems	page 17
2.12	Diagrams of system balancing and power supply	page 18
2.13	Flow rate and water speed in the panels	page 19
2.14	Pressure drops in panel tubes	page 19
2.15	Headers pressure drops	page 20
2.16	Calculation of panel pressure drop	page 21
2.17	Head and flow rate of the electric pump	page 22
2.18	Regulations and controls	page 23
2.19	Installation and dilation	page 24
2.20	Examples of ceiling fastenings	page 25
2.21	Packaging	page 26
2.22	Assembly	page 26

5	TECHNICAL SPECIFICATIONS	page 31
4.2	Insulating panel	page 30
4.1	EnergoAqua Eco radiant panel	page 30
4	CERTIFICATIONS	
3	ACCESSORIES	page 28

The technical, constructional and dimensional data are not binding and may be modified with no advance notice.

This manual may not be reproduced, wholly or in part, without written authorization in advance from Energotech AB © Energotech AB, Malmö-Sweden 2016

The European standard EN 14037 defines how to measure thermal emission, which can then be used to compare the various ceiling mounted radiant panels available on the market.

To make it easier to use this product, we feel it is helpful to provide a manual that contains all necessary technical data.

WATER SUPPLIED RADIANT PANELS

1 PRODUCT DESCRIPTION

1.1 Models, dimensions, weights, water contents - Tab.1

E k	Distance between tubes mm	Outside tube diameter mm	Cross section	Model	Nominal thermal emission (*) $\Delta = 55 \text{ K}$ W/m	Total width L mm	Distance of suspensions D mm
	150	21,3		2/150 ½"	180	300	270
	150	21,3		4/150 ½"	309	600	570
	150	21,3		6/150 ½"	431	900	870
	150	21,3		8/150 ½"	554	1200	1170
	150	26,9		2/150 ³ ⁄4"	190	300	270
	150	26,9		4/150 ³ ⁄4"	318	600	570
	150	26,9		6/150 ³ ⁄4"	449	900	870
	150	26,9		8/150 ³ ⁄4"	581	1200	1170
	111	21,3		4/100 ½"	278	450	420
	111	21,3		6/100 ½"	413	675	650
	111	21,3		8/100 ½"	516	900	870
	111	21,3		10/100 ½"	616	1120	1090
	111	26,9		4/100 ³ ⁄4"	279	450	420
	111	26,9		6/100 ³ ⁄4"	415	675	650
	111	26,9		8/100 ³ ⁄4"	534	900	870
	111	26,9		10/100 ³ ⁄4"	650	1120	1090
	150	21,3		3/150 ½"	244	450	420
NELS	150	21,3		5/150 ½"	370	750	720
ARD PA	150	21,3		7/150 ½"	492	1050	1020
TAND 4	111	21,3		5/100 ½"	347	565	535
S-NON	111	21,3		7/100 1⁄2"	466	790	760
	111	21,3		9/100 ½"	566	1010	980

Empty	weight	Weight w	vith water	Water
Panel	Header	Panel	Header	contents
("") kg/m	kg	("") kg/m	kg	dm³/m
4,7	1,1	5,23	1,8	0,53
5,4		5,84		0,44
8,7	2,0	9,75	3,3	1,05
10,1		10,98		0,88
12,7	2,9	14,28	4,8	1,58
14,9		16,21		1,31
16,8	3,8	18,90	6,3	2,10
19,7		21,45		1,75
5,1	1,1	6,00	1,8	0,90
6,1		6,88		0,78
9,7	2,0	11,50	3,3	1,80
11,6		13,16		1,56
14,3	2,9	16,99	4,8	2,69
17,1		19,45		2,35
18,9	3,8	22,49	6,3	3,59
22,0		25,75		3,13
7,6	1,5	8,65	2,5	1,05
9,1		9,98		0,88
11,0	2,1	12,58	3,6	1,58
13,1		14,41	47	1,31
14,5 17.4	2,8	10,60	4,7	2,10
19.0	2.5	00.62	EQ	1,75
21.8	3,5	20,03	5,6	2,03
87	15	10.50	25	1.80
10,5	1,0	12,06	2,0	1,56
12.6	2.1	15.29	3.6	2.69
15,3	_,.	17,65	-,-	2,35
16,7	2,8	20,29	4,7	3,59
20,4		23,53		3,13
20,9	3,5	25,39	5,8	4,49
25,5		29,41		3,91
6,7	1,5	7,49	2,5	0,79
7,8		8,46		0,66
10,8	2,4	12,11	4,1	1,31
12,6		13,69		1,09
14,9	3,4	16,74	5,7	1,84
17,4		18,93		1,53
9,3	1,8	10,61	3,1	1,31
11,1		12,19		1,09
12,8	2,5	14,64	4,2	1,84
15,3		16,83		1,53
16,3	3,2	18,67	5,3	2,37
19,6		21,57		1,97

- (*) Nominal thermal output as per EN 14037, based on tests carried out at the HLK laboratory at the University of Stuttgart. This emission is relative to $\Delta T = 55$ K, where ΔT is the difference between the average temperature of the fluid and the ambient temperature
- (**) Top line: with electro-welded tube Lower line: tube with no welding

Maximum operating pressure: 6 bar.

The suspension brackets for the radiant panel are designed withstand a load that is five times greater than the weight of the panel including water without failure. The panel is able to support a load which is three times its own weight, including water, with no permanent deformation.

EN 14037-1 Ceiling mounted radiant panels Maximum operating pressure: 6 bar

1.2 Construction

EnergoAqua, EAE, radiant panels are produced by permanently inserting tubes in a suitably shaped plate of steel sheet metal, including the side edges. The latest technologies are used to make circular grooves in the plate at regular distances.

The tubes are inserted into these grooves. The profile of the plate is wrapped around two thirds of the circumference of each single tube holding it in place. At the top, at intervals of about one meter, transversal brackets are placed. They make the entire system rigid and allow the support ties to be attached. At the worksite, the insulating mat provided is inserted between the side edges.

EAE panels use tested electro-welded steel tubes (measuring either $\frac{1}{2}$ " or $\frac{3}{4}$ "). They are used in system supplied with water at up to 120 °C.

For superheated water, steam, diathermic oil, etc., steel tubes are used which are not welded UNI 8863, made of steel, and measuring $\frac{1}{2}$ or $\frac{3}{4}$.

1.3 Production, modularity

The EAE radiant panels are produced in a variety of models:

- with tubes spaced at 150 mm, there are seven models with tubes of $\frac{1}{2}$ and four with tubes of $\frac{3}{4}$.
- with tubes spaced at 111 mm, there are seven models with tubes of $\frac{1}{2}$ and four with tubes of $\frac{3}{4}$.

Table 1 provides a summary of the range of products.

The sheet metal used to make plates is 0,6 mm thick and about 2 meters long. They are assembled to provide modules with lengths of either 4 or 6 meters.

Fig. 1 shows the dimensions of the modules of 4 or 6 meters that make up the radiant panels.

By combining these modules, it is possible to obtain radiant panels of any length in multiples of two, starting from a minimum length of 4 meters.

To ensure continuity of the panels at the points of welding of the various modules, joint covers are provided that have the same cross section as the panel. They are installed using steel clips.

1.4 Suspension brackets

Suspension brackets are positioned on the panels about one every meter.

Fig. 2 shows the exact distance between the brackets. When positioning the tubes in service, there should normally be one suspension every two meters.

The panels with pipes of $\frac{3}{4}$ " may have spacing increased by up to 30%.

Panels with a width of 60 cm or less may have suspension points with a distance of over 3 meters between them. Distances between suspensions which are greater than those indicated above may lead to permanent deformation.

1.5 Headers / Collectors

The headers have a square cross section (50x50 mm) for panels with electro-welded tubes and a round cross-section (\emptyset 60 mm) for panels with pipes without welding. Different types are provided (*fig. 3*) depending on the fluid used and the supply mode.

They are normally provided welded to the panels.

1.6 Paint

After undergoing a phosphate treatment, the panels are painted by immersion using water-soluble paints with non-toxic epoxy resin base. They are then sent to a kiln. The standard colour is RAL 9016, white.

This paint is resistant up to 170° C with water systems and up to 140° C for steam systems.

On request, and for higher temperatures, the panels can be treated with special paints.

For colours other than the standard colour, after washing, de-greasing and phosphating, the panels are painted with powder treatment that is free of harmful substances.

1.7 Insulation

Standard EN 14037 requires the laboratory which tests the output of the panels to provide them with a layer of rock wool with a thickness of 40 mm, minimum density 25 kg/m³, thermal conductivity 0.04 W/mK at 40 °C, covered on the upper side by aluminum foil.

The provided insulating material for the panels is noncarcinogenic fiberglass wool and has a thickness of 40 mm and covered on the upper side with aluminum foil. For the insulation technical data, see *paragraph 4.2*.

The insulating mat is delivered in rolls. It is to be inserted between the edges of the upper side of the panel. It is easy to lay because there are no obstacles. This ensures perfect adherence to the radiant panel.

The mat is positioned using fixture points which are then placed in holes in the suspension bracket.

1.8 Operating temperature

EAE radiant panels with electro-welded tubes are suitable for carrying fluids at temperatures of up to 120 °C. The version with pipes without welding can be used for fluids up to 180 °C.

1.9 Operating pressure

The factory pressure test, which is carried out on each welding, is 8 bar. The initial type testing for each model is 10,2 bar.

For panels with tubes without welding, the maximum operating pressure is 16 bar.

1.10 Special versions, accessories

- Panels with tubes of 1" without welding
- panels with tubes at a distance of 111 mm measuring $1\!\!/ \!\!2"$ with 4 pipes 6 pipes 8 pipes with spaces for lamps
- anti-convection lateral skirts
- concealed side profiles for suspensions at variable intervals
- joint covers for pipe joints with sleeves for press fitting
- headers for assembly with press fitting
- insulation covers for heads of panels
- upper metal sheet protections for gymnasiums.

For a more detailed description, see *chapter 3* on accessories.

Fig.1 Longitudinal dimensions of the modules that make up the panels (mm)

Fig.2 Suspension brackets (mm)

Fig.3 Headers - Execution AA, B, A, C, D (mm)

1.11 Components of the EnergoAqua Eco radiant panel

2 DESIGN DATA

2.1 Guidelines for a correct choice

The EAE range of radiant panels includes 22 different models:

- with distances between tubes of 111 mm, seven with tubes of 1/2" and four with tubes of 3/4"
- with distances between tubes of 150 mm, seven with tubes of 1/2" and four with tubes of 3/4".

Each model can be provided with electro-welded tubes or tubes without welding.

All of these models provide the designer with a wide choice.

Tab. 2 shows the guidelines for choosing the type, diameter and distance between the panel

SELECTION CRITERIA	tube <i>dista</i>	s ½" ince:	tube dista	es ¾" ance:
	111 mm	150 mm	111 mm	150 mm
Short radiant panels: up to 40 m with same-side connections, 80 m with opposite connections	x	x		
Long radiant panels: over 40 m with same side connections or 80 m with opposite connections			x	x
High-ceiling rooms	x		x	
Low-ceiling rooms ($h < 3.5$ meters)		x		x
Water flow rate per pipe from 250 to 500 l/h	x	x		
Water flow rate per pipe from 500 to 1000 I/h			×	×
Water heating fluid up to 120 °C	Elect	tro-we	lded p	oipes
Steam				
Superheated water		Tubes wel	withou ding	ut
Heat-transmitting oil		(UNI	8863)	

Tab.2 Selection criteria

2.2 Active length

Standard EN 14037 defines active length as the part of the panel with the same transversal cross-section, excluding headers and joint covers.

An EAE panel of 6 meters has an active length ($L_{\rm act}$) of 5,85 meters.

An EAE panel of 12 meters, made up of two modules of 6 meters, has an active length (L_{act}) of 11,70 meters.

An EAE panel of 14 meters, made up of two modules of 4,05 meters and one module of 6 meters, has an active length ($L_{\rm act}$) of 13,65 meters.

The examples above show that between the total length of the panels and their active length, there is a difference of about 3%. This is as opposed to an average difference of 5% in other panels available on the market. In designing EAE panels, an attempt has been made to reduce this difference to a minimum.

For this reason, a joint cover of 15 cm that is inserted to cover the joint between two modules has the same profile as the main sheet metal. Therefore it is also radiant. Laboratory tests show that it performs exactly like the active part of the panel.

2.3 Thermal output

Tests based on European standard EN 14037 were carried out and certified by the HLK laboratory of the University of Stuttgart.

The thermal output of the EAE radiant panels are shown in *Tables 3* and *4*.

Tables 5 and 6 provide the output of a pair of headers for the various models of panels.

The tables show the values of thermal power based on the difference (ΔT) between the average temperature of the fluid (t_m) and the ambient temperature (t_a).

The certified output is for the active length of a radiant panel.

An EAE panel of 8 meters, made up of two modules each with a length of 4,05 meters, has an active length ($L_{\rm act}$) of 7,8 meters.

MODEL		4/100	5/100 (**)	6/100	7/100	8/100	9/100 (**)	10/100	2/150	3/150 (**)	4/150	5/150 (**)	6/150	7/150	8/150
Distance bet	ween														
tubes	mm	111	111	111	111	111	111	111	150	150	150	150	150	150	150
Width	mm	450	565	675	790	900	1010	1120	300	450	600	750	900	1050	1200
No. of tubes	n°-Ø	4 - ½"	5 - 1⁄2"	6 - 1⁄2"	7 - ½"	8-1/2"	9 - 1/2"	10-1⁄2"	2 - 1/2"	3 - 1/2"	4 - 1/2"	5-1/2"	6 - 1⁄2"	7 - 1⁄2"	8 - 1⁄2"
$\Delta T = t_m - t_a(*)$	к	W/m	W/m	W/m	W/m	W/m	W/m	W/m	W/m	W/m	W/m	W/m	W/m	W/m	W/m
	20	84	105	125	1/1	156	171	186	55	75	05	114	132	151	170
	20	04	110	140	150	175	101	200	61	01	106	107	140	160	100
	22	94	100	140	100	175	191	200	01	04	100	127	140	109	190
	24	104	130	156	1/5	194	212	231	68	93	117	141	164	187	210
	26	115	143	171	192	213	233	254	75	102	129	154	180	205	231
	28	125	156	186	210	232	255	277	81	111	140	168	196	224	251
	30	136	170	202	228	252	276	300	88	120	152	182	212	243	273
	32	146	183	218	246	272	298	324	95	130	164	197	229	262	294
	34	157	197	234	264	292	320	348	102	139	176	211	246	281	316
	36	168	210	251	282	313	343	373	109	149	188	226	263	300	337
	38	179	224	267	301	333	365	398	117	159	201	240	280	320	359
	40	191	238	284	320	354	388	423	124	168	213	255	297	339	382
	42	202	252	301	339	375	411	448	131	178	225	270	315	359	404
	44	213	267	318	358	396	435	473	138	188	238	285	332	379	427
	46	225	281	335	377	418	458	499	146	198	251	300	350	400	449
	/18	236	205	352	307	/30	482	524	153	208	263	316	368	420	472
	50	230	235	360	416	409	506	551	161	210	200	221	386	420	472
	50	240	205	203	410	401	500	531	160	219	270	247	404	441	490 510
	52	200	325	307	430	403	530	577	109	229	209	347	404	401	519
	54	272	340	404	450	505	554	603	176	239	302	362	422	482	542
ΔTs	55	278	347	413	466	516	566	616	180	244	309	370	431	492	554
	56	284	354	422	476	527	578	630	184	250	315	378	440	503	566
	58	296	369	440	496	549	603	656	192	260	328	394	459	524	589
	60	308	385	458	516	572	628	683	199	271	342	410	477	545	613
	62	320	400	476	536	594	652	710	207	281	355	426	496	566	637
	64	332	415	494	557	617	677	738	215	292	368	442	515	588	661
	66	345	430	512	577	640	702	765	223	303	382	458	534	609	685
	68	357	446	531	598	663	728	793	231	313	395	474	552	631	710
	70	369	461	549	619	686	753	820	239	324	409	490	572	653	734
	72	382	477	568	640	709	779	848	247	335	423	507	591	675	759
	74	395	493	586	661	733	804	876	255	346	436	523	610	697	783
	76	407	508	605	682	756	830	904	263	357	450	540	629	719	808
	78	420	524	624	703	780	856	933	271	368	464	556	648	741	833
	80	433	540	643	725	803	882	961	280	379	478	573	668	763	858
	00	446	540	660	746	000	002	000	200	200	400	500	697	700	000
	02	440	530	601	740	027	900	1019	200	390	492	590	707	700	000
	04	400	512	700	700	031	930	1010	290	401	500	600	707	000	004
	00	4/1	000	700	109	0/5	901	1047	304	412	520	023	121	030	934
	88	484	604	/19	811	899	987	10/6	313	424	534	640	/4/	853	959
	90	497	621	/38	833	923	1014	1105	321	435	548	657	766	876	985
	92	510	637	758	855	948	1041	1134	330	446	563	674	786	898	1010
	94	524	653	777	877	972	1068	1164	338	458	577	692	806	921	1036
	96	537	670	797	899	997	1095	1193	346	469	591	709	826	944	1062
	98	550	686	816	921	1021	1122	1222	355	481	606	726	847	967	1088
	100	563	703	836	943	1046	1149	1252	363	492	620	743	867	990	1114
	102	577	719	856	965	1071	1176	1282	372	504	635	761	887	1013	1140
	104	590	736	875	988	1095	1203	1312	381	515	649	778	907	1037	1166
	106	604	753	895	1010	1120	1231	1342	389	527	664	796	928	1060	1192
	108	617	770	915	1033	1145	1258	1372	398	538	678	813	948	1083	1219
	110	631	786	935	1055	1171	1286	1402	407	550	693	831	969	1107	1245
	112	644	803	955	1078	1106	1314	1432	415	562	708	848	080	1130	1272
	114	659	800	075	1101	1001	12/0	1460	104	574	700	866	1010	1154	1209
	114	670	020	9/0	1101	1040	1042	1402	424	574	707	000	1010	1134	1290
	116	0/2	037	990	1124	1246	1369	1493	433	585	/3/	004	1031	11/8	1325
	118	685	854	1016	1146	12/2	1397	1524	441	597	752	902	1052	1202	1352
1	120	699	872	1036	1169	1297	1426	1554	450	609	767	920	1072	1225	1379

Tab.3 Table of thermal emissions per linear meter as per standard EN 14037 EnergoAqua Eco radiant panels - tubes of 1/2"

10

 ΔT_s = standard temperature difference, gray area of the table (*) ΔT = difference between the average temperature of the fluid and the ambient temperature (**) = non-standard panels

MODEL	4/100	6/100	8/100	10/100	2/150	4/150	6/150	8/150
Distance between								
tubesmm 111	111	111	111	150	150	150	150	150
Width mm	450	675	900	1120	300	600	900	1200
No.oftubes n°-Ø	4 - 3⁄4"	6-3⁄4"	8 - 3⁄4"	10-3⁄4"	2-3⁄4"	4-3⁄4"	6-3⁄4"	8-3⁄4"
$\Delta T = t_m - t_a(*)$ K	W/m	W/m	W/m	W/m	W/m	W/m	W/m	W/m
20		126	161	196	58	97	137	176
22	94	141	181	219	65	108	153	197
24	105	156	200	243	72	120	169	219
26	115	171	220	267	79	132	186	240
28	126	187	240	292	86	144	203	262
30	136	203	261	317	93	156	220	284
32	147	219	281	342	100	168	237	307
34	158	235	302	367	108	181	255	330
36	169	252	323	393	115	193	273	353
38	180	268	345	419	123	206	291	376
40	192	285	366	446	131	219	309	399
42	203	302	388	472	138	231	327	423
44	215	319	410	499	146	245	346	447
46	226	336	432	526	154	258	364	471
48	238	353	454	553	162	271	383	495
50	250	370	477	581	170	284	402	519
52	261	388	499	608	178	298	421	544
54	273	406	522	636	186	311	440	568
55	279	415	534	650	190	318	449	581
56	285	423	545	664	194	325	459	593
58	298	441	568	692	202	338	478	618
60	310	459	592	721	210	352	498	644
62	322	477	615	749	219	366	517	669
64	334	496	638	778	227	380	537	694
66	347	514	662	807	235	394	557	720
68	359	532	686	836	244	408	577	746
70	372	551	710	865	252	422	597	772
72	384	570	734	895	261	436	617	798
74	397	588	758	924	269	451	637	824
76	410	607	782	954	278	465	658	850
78	423	626	807	984	286	479	678	877
80	435	645	831	1014	295	494	698	903
82	448	664	856	1044	304	509	719	930
84	461	683	881	1074	312	523	740	957
86	474	702	905	1104	321	538	761	984
88	488	722	930	1135	330	553	781	1011
90	501	741	955	1166	339	567	802	1038
92	514	760	981	1196	348	582	823	1065
94	527	780	1006	1227	357	597	844	1092
96	540	800	1031	1258	366	612	866	1120
98	554	819	1057	1289	375	627	887	1147
100	567	839	1082	1321	384	642	908	1175
102	581	859	1108	1352	393	657	930	1203
104	594	879	1134	1383	402	673	951	1230
106	608	899	1159	1415	411	688	973	1258
108	621	919	1185	1447	420	703	994	1286
110	635	939	1211	1479	429	718	1016	1314
112	649	959	1237	1511	438	734	1038	1343
114	662	979	1264	1543	447	749	1060	1371
116	676	1000	1290	1575	457	765	1082	1399
118	690	1020	1316	1607	466	780	1104	1428
120	704	1040	1343	1639	475	796	1126	1456

Tab.4 Table of thermal emissions per linear meter as per standard EN 14037 EnergoAqua Eco radiant panels - tubes of 3/4"

 ΔT_s = standard temperature difference, gray area of the table (*) ΔT = difference between the average temperature of the fluid and the ambient temperature

MODEL		4/100	5/100	6/100	7/100	8/100	9/100	10/100	2/150	3/150	4/150	5/150 (**)	6/150	7/150	8/150
Distance be	tween														
tubes	mm	111	111	111	111	111	111	111	150	150	150	150	150	150	150
Width	mm	450	565	675	790	900	1010	1120	300	450	600	750	900	1050	1200
No. of tubes	n°-Ø	4 - ½"	5-1/2"	6-1/2"	7 - ½"	8-1/2"	9 - 1/2"	10-1⁄2"	2 - 1/2"	3-1/2"	4 - 1/2"	5-1/2"	6-1⁄2"	7 - ½"	8 - 1/2"
$\Delta T = t_{x} - t_{x} (*)$	к	w	w	w	w	w	w	w	w	w	w	w	w	w	w
	20	26	44	50	50	64	71	77	20	24	46	E O	71	VV	06
	20	30	44 50	52	00	70	/1	07	22	00	40	00	/1	03	100
	22	40	50	59	00	73	80	87	25	38	52	00	80	94	108
	24	45	55	66	73	81	89	96	27	43	58	73	89	104	120
	26	49	61	73	81	90	98	107	30	47	64	81	98	115	133
	28	54	67	80	89	98	108	117	33	52	70	89	107	126	145
	30	59	74	87	97	107	117	128	36	57	77	97	117	137	158
	32	64	80	95	106	117	127	138	39	61	83	105	127	149	171
	34	69	86	102	114	126	137	149	42	66	90	113	137	160	184
	36	74	93	110	123	135	148	160	45	71	97	122	147	172	197
	38	80	99	118	132	145	158	171	48	76	103	130	157	184	211
	40	85	106	126	140	154	169	183	51	81	110	139	167	196	224
	42	90	113	134	149	164	179	194	55	86	117	147	177	208	238
	44	96	119	142	158	174	190	206	58	91	124	156	188	220	252
	46	101	126	150	168	184	201	218	61	96	131	165	199	232	266
	48	107	133	159	177	194	212	230	64	102	139	174	209	245	280
	50	113	140	167	186	205	223	242	68	107	146	183	220	257	294
	52	118	148	176	106	215	234	254	71	112	153	102	231	270	300
	54	104	155	194	205	215	204	204	74	112	161	201	201	210	303
<u>.</u>	54	124	155	104	203	220	240	200	74	120	165	201	242	203	323
	55	127	100	109	210	231	251	212	70	120	100	200	240	209	331
	50	130	162	193	215	236	257	278	78	123	108	211	253	296	338
	58	136	169	202	225	247	269	291	81	129	1/6	220	265	309	353
	60	141	177	211	235	258	281	303	85	134	184	230	276	322	368
	62	147	184	220	245	269	292	316	88	140	191	239	287	335	383
	64	153	192	229	255	280	304	329	92	145	199	249	299	348	398
	66	159	200	238	265	291	316	342	95	151	207	259	310	362	413
	68	166	207	247	275	302	328	355	99	157	215	269	322	375	428
	70	172	215	257	286	313	341	368	102	162	223	278	334	389	444
	72	178	223	266	296	324	353	381	106	168	231	288	346	403	459
	74	184	231	276	306	336	365	394	110	174	239	298	358	416	475
	76	190	239	285	317	347	378	408	113	180	247	308	370	430	491
	78	197	247	295	328	359	390	421	117	186	255	319	382	444	506
	80	203	255	304	338	371	403	435	121	192	263	329	394	458	522
	82	209	263	314	349	382	415	448	124	198	272	339	406	472	538
	84	216	271	324	360	394	428	462	128	204	280	349	418	487	554
	86	222	279	334	371	406	441	476	132	210	288	360	431	501	570
	88	229	287	344	382	418	454	490	136	216	297	370	443	515	587
	90	235	296	354	393	430	467	504	140	222	305	381	456	530	603
	.92	242	304	364	404	442	480	518	143	228	314	391	468	544	619
	0/	2/0	312	374	415	151	103	532	1/7	224	303	402	/81	550	636
	06	255	301	384	426	467	506	5/6	151	2/1	321	112	402	572	652
	90	200	321	304	420	407	500	540	151	241	040	413	493	575	002
	100	202	329	394	430	4/9	520	500	100	247	340	424	500	000	690
	100	269	338	405	449	491	533	5/5	159	253	349	434	519	603	080
	102	2/6	346	415	460	504	547	589	163	260	357	445	532	018	702
	104	282	355	425	472	516	560	604	167	266	366	456	545	633	719
	106	289	364	436	483	529	574	618	171	272	375	467	558	648	736
	108	296	372	446	495	541	587	633	175	279	384	478	571	663	753
	110	303	381	457	507	554	601	647	179	285	393	489	584	678	770
	112	310	390	467	518	567	615	662	183	292	402	500	597	693	787
	114	317	399	478	530	580	628	677	187	298	411	511	610	708	804
	116	324	408	489	542	592	642	692	191	305	420	523	624	723	822
	118	331	417	500	554	605	656	707	195	311	429	534	637	739	839
	120	338	426	510	566	618	670	722	199	318	438	545	650	754	856

Tab.5 Table of thermal emissions of headers as per standard EN 14037 Pair of headers for the EAE - tubes of $\frac{1}{2}$ "

12

 ΔT_s = standard temperature difference, gray area of the table (*) ΔT = difference between the average temperature of the fluid and the ambient temperature (**) = non-standard panels

					00174			
MODEL	4/100	6/100	8/100	10/100	2/150	4/150	6/150	8/150
Distance between								
tubes mm	111	111	111	111	150	150	150	150
Width mm	450	675	900	1120	300	600	900	1200
No.oftubes n°-Ø	4 - 3⁄4"	6-3⁄4"	8 - 3/4"	10-3⁄4"	2 - 3⁄4"	4 - 3/4"	6-3⁄4"	8-3⁄4"
$\Delta T = t_m - t_e(*)$ K	w	w	w	w	w	w	w	w
<u> </u>	42	57	67	77	20	40	70	110
20	43	57	70	07	20	49	79	104
22	49	60	76	87	23	55	89	124
24	55	72	84	97	25	62	99	138
26	60	80	94	107	28	68	110	152
28	66	89	103	117	31	75	120	167
30	72	97	112	128	34	82	131	181
32	78	105	122	138	36	89	142	197
34	84	114	132	149	39	96	153	212
36	90	123	142	160	42	103	165	227
38	97	132	152	171	45	111	176	243
40	103	141	162	183	48	118	188	259
42	109	150	172	194	51	126	200	275
44	116	160	183	206	54	133	212	291
46	122	169	193	217	57	141	224	308
48	129	179	204	229	60	149	236	324
50	136	189	215	241	63	157	249	341
52	143	100	226	253	66	165	261	358
52	140	199	220	255	60	172	201	275
54	149	209	237	205	09	173	274	375
55	153	214	243	271	71	177	200	304
56	156	219	248	277	73	181	287	393
58	163	229	260	290	76	189	300	410
60	170	240	271	302	79	198	313	428
62	178	250	283	315	82	206	326	445
64	185	261	294	327	86	214	339	463
66	192	271	306	340	89	223	352	481
68	199	282	318	353	92	232	366	499
70	206	293	330	366	96	240	379	517
72	214	304	342	379	99	249	393	536
74	221	315	354	392	102	258	407	554
76	229	326	367	405	106	267	421	573
78	236	337	379	418	109	276	435	592
80	244	349	391	432	113	285	449	610
82	251	360	404	445	116	294	463	629
84	259	372	416	459	120	303	477	648
86	267	383	429	472	123	312	491	668
20 20	07/	205	440	186	107	201	505	687
00	080	<u>/</u> 07	442	500	120	320	500	706
90	202	407	400	500	104	240	520	700
92	290	419	407	514	104	340	534	120
94	298	431	480	528	138	349	549	745
96	306	443	494	542	141	359	564	/65
98	314	455	507	556	145	368	578	/85
100	322	467	520	570	149	378	593	804
102	330	479	533	584	152	387	608	824
104	338	491	546	598	156	397	623	844
106	346	504	560	612	160	407	638	865
108	354	516	573	627	163	417	653	885
110	362	529	587	641	167	426	668	905
112	370	541	601	656	171	436	684	925
114	379	554	614	670	175	446	699	946
116	387	567	628	685	179	456	714	967
118	395	579	642	700	182	466	730	987
120	404	592	656	714	186	476	745	1008

Tab.6 Table of thermal emissions of headers as per standard EN 14037 Pair of headers for the EAE - tubes of $\frac{3}{4}$ "

 ΔT_s = standard temperature difference (*) ΔT = difference between the average temperature of the fluid and the ambient temperature

2.4 Corrective coefficients for high installation heights

When the radiant panels installation height is over 6 meters, consideration must be made of the reduced radiant effects at the level of the room of the occupants. Therefore, a greater heating surface will be required. *Table 7* below shows the coefficients of reduction in radiance for installation heights of over 6 meters.

Tab. 7

H(m)	6	7	8	9	10	11	12	13	14	16	18	20
fn	1,00	0,97	0,95	0,92	0,90	0,88	0,86	0,84	0,82	0,79	0,76	0,73

Example: in a warehouse where the panels are installed at a height of 10 meters, the number of panels obtained by dividing the total thermal requirement by the emission per meter of the selected model must then be divided by $f_n = 0.9$.

A specific evaluation should be made taking into consideration the size of the solid angles between the occupants of the room and the surfaces of all the panels installed. This is illustrated more clearly by the laws of thermal exchange means of by radiation. From our experience, and without entering into issues that are difficult to resolve which would involve factors of shape (fraction of the total radiant power which starts from one surface and reaches another one), we suggest this simple method:

- a) calculate the cold surface of the external walls below the panels (perimeter x height of installation)
- b) determine the ratio between this surface and thefloor surface
- c) if this ratio is greater than 1, the corrective coefficients for elevated heights are applied; if it is less than 1, they are not applied.

Panels supplied with water up to 120°C normally do not require the installation of side skirts.

These are found in systems which are used to heat single zones or where the thermal fluid is at a very high temperature.

For special installations, consult our technical department.

2.5 Corrective coefficient for inclined panels

EAE radiant panels can be installed at an inclination, following the geometry of the roof.

They can have either a transversal or longitudinal inclination.

Fig.7 Transversally inclined panel

Fig.8 Longitudinally inclined panel

Inclination favours convective movement. There is an increase in total output, while output from radiance is decreased.

The new output value is determined by multiplying the thermal output in *Table 3* and *4* by the corrective coefficient shown in *Fig. 9*, based on the angle of inclination.

Fig.9 Corrective coefficient of emissions for inclined panels

2.6 Distance between radiant panels

To ensure a uniform distribution of heat, the distance between radiant panels must be equal to or less than their installation height.

The distance from the cold wall must not be greater than 1/3 of the height.

Fig.10 Distance between radiant panels

2.7 Minimum installation height

When making calculations for a radiant panel system, keep in mind that the required surface area of the panels decreases as the temperature of the thermal fluid increases.

In order to ensure comfort and well-being of individuals and prevent excessive radiation, limits must be set for the minimum height of panel installation.

Table 8 provides the minimum height of panel installation, based on the average temperature of the thermal fluid and the distance between tubes.

Tab.8 Minimum height of installation based on average temperature of thermal fluid

average temperature of	distance between tubes 111 mm	distance between tubes 150 mm		
water supply °C	H min (m)	H min (m)		
60	3,80	3,60		
70	4,10	3,90		
80	4,30	4,10		
90	4,50	4,30		
100	4,70	4,50		
110	4,90	4,70		
120	5,10	4,90		

2.8 Positioning of ceiling mounted panels

When positioning and arranging the panels, it is advisable to comply with the following:

- if possible, install the panels parallel to the longest wall of the building
- keep a distance between the wall and the first panel that is not greater than a third of the installation height
- consider panels that are as long as possible, taking into account output and pressure drops
- chose the panel models, taking into account the installation height and the resulting area of radiation
- chose the panel models based on their thermal emission. Position models with greater output near the outer to walls to contrast cold radiation better
- check that the minimum height of installation is compatible with the temperature of the heating fluid being used. For installation at reduced height, choose panels that are narrower or that have a greater distance between tubes.

Figures 11, *12* and *13* clearly demonstrate how correct positioning of panels provides a uniform radiation and an ideal ambient temperature.

Fig.11 Intensity of radiation and ambient temperature with an equal distribution of panels which have the same emission and are positioned parallel to the longest side of the building

Fig.12 Intensity of radiation and ambient temperature and with panels which have a higher emission positioned nearer the external walls

Fig.13 Intensity of radiation and ambient temperature with panels positioned parallel to the shortest wall of the Building

2.9 Choosing the right model: calculations of radiant panels

While respecting the structural needs of the building and the layout of any scaffolding, machinery, and so on, it is always advisable to place the radiant panels parallel to the longest wall.

In this, if you position panels of greater length the number of panels it thus reduced, therefore you will also reduce the thermal fluid distribution network, resulting in lower system costs.

The panels length and layout must be such that it evenly covers the entire area to be heated.

In the following examples, we have hypothesized similar rooms but with different panel heights, or with different panel layouts.

First example (Fig. 11 and 14)

Consider a warehouse with the following dimensions: 43 x 21 meters with average height of 5,5 meters, for a volume of approximately 4967 m^3 .

The thermal requirement has been estimated at 95 kW. Ambient temperature $t_a = 20$ °C. Panel installation height of the 4,5 m. Maximum distance between panels 4,5 m.

Consider 5 panels with a length of 40 m, positioned as in *Fig. 14*, for a total length of 200 m.

Dividing the thermal requirement by the total length of the panels gives the thermal emission per metre:

95000 W / 200 m = 475 W/m

$$t_m = \frac{t_1 + t_2}{2} = \frac{80 + 70}{2} = 75 \,^{\circ}\text{C}$$

and the ΔT is: $\Delta T = t_m - t_a = 75^{\circ}C - 20^{\circ}C = 55^{\circ}C$

From Table 3 with $\Delta T = 55$ °C and considering model 8/100-1/2", thermal emission of 516 W/m is obtained.

The total installed thermal power is:

 $200 \text{ m} \times 516 \text{ W/m} = 103200 \text{W}$

this value provided is sufficient to cover thermal requirement.

Having a distribution of only 5 connections to balance the circuit, it is advisable to use calibration valves on the panels.

Fig.14 Example of EAE panels in warehouse with average height of 5,5 m and parallel panels on the longest side

Second example (Fig. 12 and 15)

Consider a warehouse with the same previous dimensions: 43×21 meters with average height of 8,2 meters, for a volume of approximately 7405m³.

The thermal requirement has been estimated at about $120\,\mathrm{kW}.$

Ambient temperature t_a = 15 °C. Panel installation height 7 m. Maximum distance between panels 7 m.

Consider 5 panels with a length of 40 m, positioned as in *Fig. 15*, for a total length of 200 m. As previously mentioned in *paragraph 2.4*, it is not

necessary to increase the number of panels to be installed.

Dividing the thermal requirement by the total length of the panels provides the average thermal emission per meter:

120000 W / 200 m = 600 W / m

$$t_m = \frac{t_1 + t_2}{2} = \frac{80 + 70}{2} = 75 \,^{\circ}\text{C}$$

and the ΔT is: $\Delta T = t_{m-} t_{a} = 75 \degree C - 15 \degree C = 60 \degree C$

Positioned laterally, there are 2 panels model $10/100-\frac{1}{2}$ " with a length of 40 meters (80 m total). Positioned centrally there are 3 panels model $8/100-\frac{1}{2}$ " with a length of 40 meters (120 m total).

Table 3 provides with $\Delta T = 60 \,^{\circ}C$ a thermal emission of:

683 W/m for panels of 10/100-1/2" 572 W/m for panels of 8/100-1/2"

The total thermal emission of the single models is: $80m \times 683W/m = 54640W$

120m x 572W/m=68640W

for a total of:

54640 + 68640 = 123280 W

this value provided is sufficient to cover the 120 kW required.

Having a distribution of only 5 connections to balance the circuit, it is advisable to use calibration valves on the panels.

Fig.15 Example of EAE panels in warehouse with average height of 5,5 m and parallel panels on the longest side

Third example (Fig. 13 and 16)

Consider a warehouse, again with the same dimensions: 43 x 21 meters with average height of 5,5 meters, for a volume of approximately 4967 m^3 .

The thermal requirement has been estimated as about 95 kW.

Ambient temperature $t_a = 20$ °C. Panel installation height 4,5 m. Maximum distance between radiant panels 4,5 m.

In the eventuality that it is not possible to position the panels parallel to the longer wall of the warehouse, then they need to be positioned parallel to the shorter wall. Consider 10 panels with a length of 18 m, arranged as in *Fig. 16*, for a total length of 180 m.

Dividing the thermal requirement by the length gives the average thermal emission per meter:

95000 W / 180 m = 528 W/m

$$t_m = \frac{t_1 + t_2}{2} = \frac{80 + 70}{2} = 75 \,^{\circ}\text{C}$$

And the ΔT is: $\Delta T = t_m - t_a = 75^{\circ}C - 20^{\circ}C = 55^{\circ}C$

Positioned laterally there are 2 panels model $10/100-\frac{1}{2}$ " with a length of 18 meters (36 m total) and in the center there are 8 panels model $8/100-\frac{1}{2}$ " with a length of 18 meters (144 m total).

Table 3 provides with $\Delta T = 55 \,^{\circ}C a$ thermal emission of:

616W/m for panels 10/100-1/2"

516W/m for panels 8/100-1/2"

The total thermal power of the single models is:

 $36m \times 616W/m = 22176W$

 $144m \times 516W/m = 74304W$

for a total of:

22176 + 74304 = 96480 W

Thermal power sufficient to cover thermal requirement. Having a distribution of 10 connections and short panels, the circuit can be balanced using "inverse return".

Fig.16 Example of EAE panels in warehouse with average height of 5,5 m and parallel panels on the shortest side

2.10 Effects on luminosity originating from the ceiling covering

Correctly positioned, ceiling mounted panels do not reduce the light from skylights in the roof.

The effects on luminosity have been verified both before and after the installation of the panels, in many applications the reduction of light in the warehouses was negligible.

2.11 Use of panels in cooling systems

Currently not available, under development.

2.12 Diagrams of system balancing and power supply

Radiant panels supplied by hot water can be connected to the distribution network with inlet and outlet of the fluid on opposite sides (type A headers) or with connections on the same side (type AA and B headers).

Fig.17 Connection with fluid inlet and outlet on opposite side

Fig.18 Connection with fluid inlet and outlet on same side

In the first case, all the panel tubes are supplied in parallel and the water flow is divided equally among them. In the second case, half the tubes are connected in series with the other half, thus doubling the flow rate of each tube. The following are some examples of possible supply layouts.

Fig.19 EAE radiant panels in parallel with opposite connections

Fig.20 EAE radiant panels in parallel with same side connections

Fig.21 EAE radiant panels in series with opposite connections

In any heating system, it is important that the heating elements are supplied with the proper amount of fluid as calculated during the systems' design phase.

The radiant panels must also be applied in a perfectly balanced manner.

To balance, provide calibration valves must be used where necessary and are to be adjusted at start-up.

2 Cut-off and balancing

If there are many panels, it is advisable to provide a set of tubes for the "inverse return" (*Fig. 23 and 24*) which balances the system. This solution is expensive and it is not always feasible.

Fig.23 EAE radiant panels with opposite connections and with "inverse return" tubes

Fig.24 EAE radiant panels with same-side connections and with "inverse return" pipes

2.13 Flow rate and speed of water in the panels

If the speed of the water panel tubes of the panels is too low, the water will not be able draw off the air. This may cause a shutdown in circulation with a substantial reduction in the output of the panel.

During the design of the systems, it is advisable to make sure that the speed of the water in each single tube is never less than 0,23 m/s in tubes of $\frac{1}{2}$ " and 0,32 m/s in tubes of $\frac{3}{4}$ ".

In hot water radiating panels, it is advisable to have a temperature difference of 10°C between the supply and return headers. This is considered an acceptable compromise between the size of the network and the need for a high surface temperature.

Also, pressure drops may be considered acceptable in panel tubes which do not exceed 200 - 250 Pa/m.

2.14 Panel tube pressure drops

Table 9 shows the values of the pressure drop in Pa/m and of the speed in m/s based on the water flow rate of each tube in a panel, with an average water temperature of $75 \,^{\circ}$ C.

This is true both for panels with electro-welded tubes and for those with tubes without welding.

Tab.9 Pressure drop in tubes in EAE expressed in Pa/m

	Elec	ctro-we	elded tu	lbes	Tubes without welding					
	1/2	2"	3/2	," 1	1/	2"	3/2	1"		
Water flow rate I/h	Pressure drop in Pa/m	Speed m/s								
200	41	0,21			70	0,25				
220	49	0,23			85	0,28				
240	57	0,25			100	0,31				
260	66	0,28			115	0,33				
280	75	0,30			129	0,36				
300	86	0,32			150	0,39				
320	96	0,34			165	0,41				
340	108	0,36	31	0,22	190	0,44	45	0,25		
360	119	0,38	35	0,23	200	0,46	50	0,26		
380	132	0,40	38	0,24	220	0,49	55	0,28		
400	145	0,42	42	0,25	250	0,51	60	0,29		
420	159	0,45	46	0,27	270	0,54	65	0,31		
440	173	0,47	50	0,28	295	0,57	70	0,32		
460	188	0,49	54	0,29	340	0,61	76	0,33		
480	203	0,51	58	0,30	350	0,62	82	0,35		
500	219	0,53	62	0,32	360	0,66	90	0,36		
550	262	0,58	73	0,35	450	0,71	110	0,40		
600	309	0,64	86	0,38	525	0,77	130	0,44		
650			100	0,41			150	0,47		
700			114	0,44			170	0,51		
750			130	0,48			195	0,54		
800			146	0,51			220	0,58		
850			164	0,54			250	0,62		
900			182	0,57			275	0,65		
950			202	0,60			300	0,69		
1000			222	0,64			350	0,75		
1100			266	0,70			400	0,80		
1200			313	0,76			455	0,88		
1300			364	0,83			550	0,95		
1400			420	0,88			640	1,04		

For average water temperatures different from 75 °C, the values in *Table 9* must be calculated, applying the coefficients shown in *Table 10*.

Tab.10 Coefficients for average water temperatures different from 75 °C

Temperature	40°C	60°C	90°C	120°C	140°C
Coefficient	1,18	1,06	0,96	0,91	0,87

2.15 Header pressure drops

Table 11 and 12 show the pressure drops in a pair of headers based on their water flow rate, the type of supply (same-side or opposite) and the diameter of the tubes $(\frac{1}{2})^{2}$ or $\frac{3}{4}$).

Tab.11 Pressure drop in Pa of a PAIR OF HEADERS - TUBES $\frac{1}{2}$ "

Total flow rate of headers	W Pressure drop in pair of headers A Opposite sides Opposite sides s number of tubes per panel						Pressure drops in pair of headers AA-B - Same side number of tubes per panel						
l/h	2	3	4	5	6	7	8	9	10	4	6	8	10
400	110									240	140		
500	170	100								380	220		
600	240	150	100							540	310	210	
700	320	200	140	110						730	420	290	220
800	420	250	180	140	120	100				960	550	380	280
900	530	320	230	180	150	130	110			1210	690	480	360
1000	650	400	280	220	180	160	140	120	110	1500	850	580	440
1200	940	560	410	320	260	230	200	180	160	2150	1230	840	640
1400	1270	770	550	430	360	300	270	240	220	3000	1670	1150	870
1600	1660	1000	720	560	460	400	350	310	280		2200	1500	1150
1800	2100	1270	910	710	590	500	440	390	350		2800	1900	1450
2000		1560	1120	880	720	620	540	480	440		3400	2350	1800
2250		2000	1420	1100	910	800	680	610	550			3000	2300
2500			1750	1370	1130	980	840	750	680			3700	2800
2750			2100	1650	1360	1200	1050	910	830			4400	3400
3000				2000	1630	1400	1250	1080	980				4000
3500				2700	2200	1900	1650	1500	1350				5400
4000					2900	2500	2150	1950	1750				
4500						3200	2800	2500	2200				
5000						3900	3400	3000	2800				
5500							4100	3700	3300				
6000								4400	3900				
7000									5400				

Tab.12 Pressure drop in Pa of a PAIR OF HEADERS - TUBES 3/4"

Total flow rate of headers	Pressure drops in pair of headers A - Opposite sides number of tubes per panel					Pr of hea nun	essure d ders AA- nber of tub	rops in p B - Sam bes per p	air e side anel
l/h	2	4	6	8	10	4	6	8	10
800						320			
900	180					400	240		
1000	220	100				500	290	210	
1200	320	150	100			710	420	300	230
1400	440	200	140	110		970	570	400	310
1600	570	260	180	140	120	1300	740	530	410
1800	720	330	230	180	150	1600	940	660	520
2000	890	410	280	220	190	2000	1200	840	640
2250	1150	520	350	280	240	2500	1500	1050	800
2500	1400	640	430	340	290	3100	1800	1300	1000
2750	1700	770	530	420	350	3800	2200	1550	1200
3000	2000	920	630	490	420	4500	2600	1850	1450
3500	2700	1300	850	670	570		3600	2500	1950
4000	3600	1650	1100	870	740		4700	3300	2550
4500		2100	1400	1100	940			4200	3200
5000		2600	1750	1400	1150			5100	4000
5500		3100	2100	1700	1400			6200	4800
6000			2500	2000	1700				5700
7000			3400	2700	2300				7800
8000			4450	3500	3000				
9000				4400	3800				
10000				5500	4600				
12000					6700				

2.16 Calculation of panel pressure drop

To determine the pressure drop of a radiant panel, you need to add the pressure drop of the tubes to that of the headers, using the data provided in *paragraphs 2.14* and *2.15*.

Here are a few examples.

First example

Consider a radiant panel model 8/100 with a length of 42 meters (*Fig.* 25) with electro-welded tubes of $\frac{1}{2}$ " and with opposite connections (type A headers).

$$\Delta T = \frac{t_1 + t_2}{2} - t_a = t_m - t_a = 65 \,^{\circ}\text{C}$$

With this data, *Table 3* shows that the thermal output per meter of the panel is:

 $\Phi_{\rm m}=628\,W/m$

The total thermal output of the panel with a length of 42 meters is therefore:

$$\Phi_{\!p} = 628 \, W/m \, x42 \, m = 26376 \, W$$

and its water flow rate:

$$Q_{p} = \frac{\Phi \times 0.86}{t_{1} - t_{2}} = \frac{26376 \times 0.86}{10} = 2268 \text{ kg/h}$$

Since the panel has 8 tubes and opposite connections, the inlet water is equally divided among all 8 tubes, and so the water flow rate of each pipe is:

$$Q_t = \frac{Q_p}{8} = \frac{2268}{8} = 283 \text{ kg/h} = 283 \text{ l/h}$$

this is a higher value than the suggested minimum flow rate in a tube of $1\!\!/ \!\!/ 2$ " (220 l/h).

Table 9 shows that the pressure drop in the tubes is more or less 76 Pa/m.

Therefore, the total pressure drop in the tubes is:

$$\Delta p_t = 42 \text{ m x } 76 \text{ Pa/m} = 392 \text{ Pa}$$

Using *Table 11*, in correspondence with the total flow rate of the panel, which is about 2268 l/h, it is possible to evaluate that the pressure drop in the pair of headers Δp_c is 693 Pa.

The pressure drop of the panel will be the sum of the two values, therefore:

 $\Delta p_{P} = \Delta p_{t} + \Delta p_{c} = 3192 + 6693 = 3885 \text{ Pa}$ (equal to 0.39 m c. A.)

Second example

1 Header A

Consider a radiant panel model 10/100 with a length of 42 meter (*Fig. 26*) with electro-welded tubes of $\frac{1}{2}$ " and with same-side connections (type AA and B headers).

 $\begin{array}{rll} \mbox{Water supply temperature} & t_1 &= 85\ ^\circ \mbox{C} \\ \mbox{Water return temperature} & t_2 &= 75\ ^\circ \mbox{C} \\ \mbox{Ambient temperature} & t_a &= 15\ ^\circ \mbox{C} \end{array}$

$$\Delta \mathsf{T} = \frac{\mathsf{t}_1 + \mathsf{t}_2}{2} - \mathsf{t}_a = \mathsf{t}_m - \mathsf{t}_a = 65\,^{\circ}\mathsf{C}$$

With this data, *Table 3* shows that the thermal output per meter of the panel is:

 $\Phi_m = 751 \text{ W/m}$

The total thermal output of the panel with a length of 42 meters, is therefore:

 $\Phi_{n} = 751 \,\text{W/m} \,\text{x42m} = 31542 \,\text{W}$

and its water flow rate:

$$Q_{p} = \frac{\Phi_{p} \ge 0.86}{t_{1} - t_{2}} = \frac{31542 \ge 0.86}{10} = 2713 \text{ kg/h}$$

Since the AA header has a diaphragm in it, the water supply is divided among 5 tubes. Therefore, the flow rate of each tube is:

$$Q_t = \frac{Q_p}{5} = \frac{2713}{5} = 543 \text{ kg/h} = 543 \text{ l/h}$$

the above mentioned value is higher than the suggested minimum flow rate in a tube of $\frac{1}{2}$ " (220 l/h).

Table 9 shows that the pressure drop in the tubes is roughly 256 Pa/m.

Therefore, the total pressure drop in the tubes is:

$$\Delta p_t = 42m \times 2 \times 256 Pa/m = 21504 Pa$$

In *Table 11*, under the total flow rate of the panel, which is about 2713 l/h, it is possible to evaluate that the pressure drop in the pair of headers Δp_c is about 3320 Pa.

The pressure drop of the panel will be the sum of the two values, therefore:

 $\Delta p_p = \Delta p_t + \Delta p_c = 21504 + 3320 = 24824 \text{ Pa}$ (equal to 2.53 m c. a.)

Header R

21

A

Third example

Consider a radiant panel model 10/100 with a length of 84 meters (*Fig.27*) with electro-welded tubes of $\frac{3}{4}$ " and with same-side connections (type AA and B headers).

$$\Delta T = \frac{t_1 + t_2}{2} - t_a = t_m - t_a = 62.5 \,^{\circ}C$$

With this data, *table 4* shows that the thermal output per meter of the panel is:

$$\Phi_{\rm m} = 756 \, {\rm W/m}$$

The total thermal output of the panel 84 meters long, is therefore:

$$\Phi_{n} = 756 \text{ W/m x } 84 \text{ m} = 63504 \text{ W}$$

and its water flow rate:

$$Q_{p} = \frac{\Phi_{p} \times 0.86}{t_{1} - t_{2}} = \frac{-63.504 \times 0.86}{15} = 3.640 \text{ kg/h}$$

Since the AA headers has a diaphragm in it, the supply water is divided among 5 tubes. Therefore, the flow rate of each tube is:

$$Q_t = \frac{Q_p}{5} = \frac{3\ 640}{5} = 728\ kg/h = 728\ l/h$$

the above mentioned value is higher than the suggested minimum flow rate in a tube of $\frac{3}{4}$ " (500 l/h).

Table 9 shows that the pressure drop in the tubes is 123 Pa/m.

Therefore, the total pressure drop in the tubes is:

$$\Delta p_t = 84 \text{ m x } 2 \text{ x } 123 \text{ Pa/m} = 20664 \text{ Pa}$$

In *table 12*, under the total flow rate of the panel, which is about 3640 l/h, it is possible to evaluate that the pressure drop in the pair of headers Δp_{c} is about 2120 Pa.

The pressure drop of the panel will be the sum of the two values, therefore:

 $\Delta p_{P} = \Delta p_{t} + \Delta p_{c} = 20664 + 2120 = 22784 \text{ Pa}$ Fig.27

2.17 Head and flow rate of the electric pump

In a circuit of radiant panels, the flow rate of the electric pump is determined from the sum of the flow rates of the single panels of the circuit. Its static pressure is obtained by adding the pressure drops of the least favored radiant panel, any cut-off and calibration valves on the connection of that panel, the tubes that supply it and the heating plant.

Consider, for example, the need to heat a warehouse measuring 90 x 60 meters, 9 meters high, where the panels have been installed at a height of 8 meters.

↑ ↓ Header AA

16 panels model $10/100-\frac{1}{2}$ " 42 meters long have been adopted.

Taking as valid the conditions described in the second example of the previous paragraph, a panel $10/100-\frac{1}{2}$ " 42 meters long has a pressure drop of about 2,53 m c.a. and a flow rate of 2713 l/h. The least favored panel will be number 8 (or number 16).

8 panels model 10/100-3/4" 84 meters long have been adopted.

Taking as valid the conditions described in the third example of the previous paragraph, a panel 10/100-3/4" 84 meters long has a pressure drop of about 2,32 m c.a. and a flow rate of 3640 l/h.

The least favored panel will be number 8.

Obviously, the second solution is more rational and advantageous, for the following reasons:

- since the number of connections is limited, there is no need for "inverse return". For balancing of the circuit, it is possible to use only a few calibration valves.
- the use of panels with tubes of 3/4" allows for the realization of longer panels with modest pressure drops.

In this example, the $\frac{3}{4}$ " panel has a greater output than the $\frac{1}{2}$ " panel. Therefore, with the same power installed power (about 500 kW) a greater temperature difference can be used (85 °C - 70 °C instead of 85 °C - 75 °C). This will provide a flow rate of 29 m³/h as opposed to the 43 m³/h required by panels with tubes of $\frac{1}{2}$ ".

Therefore, with the same power installed and pressure drops, there is reduced flow rate, which means smaller tube diameters and reduced power of the electric pump.

All this leads to a reduction in the amount of tubes required distribution which therefore results in substantial savings.

2.18 Controls

Since this system has low thermal inertia, the ambient temperature can be controlled in a variety of ways, depending on the type and importance of the system. However, you should keep in mind that with ceiling mounted radiant panel systems, changes regulations should be in made to the temperature of the water delivered to the panels. The water flow rate should be kept constant. *"Turning* the panels *on and off"* may create unpleasant sensations (like moving from the sunshine into shade). This is because blocking circulation means blocking the beneficial effect of radiation.

It is therefore advisable to use a three-ways valve, controller and ambient probes as shown in *diagram 1*. The three-ways valve mixes the water to be sent to the panels so as to maintain the desired ambient temperature.

Normal ambient probes can be installed to measure the air temperature. Nowadays the market also provides probes that directly measure the operating temperature. Thanks to the rapid start up of the system which reduces operating costs, it is advisable install a timer for daily and weekly shutdowns. In this case we also suggest to include an anti-freeze function.

In panel systems of a certain size (warehouses of over 10000 m²) in which operating costs are substantial, controls system should be completed with an outdoor probe. However, this probe must never limit the operation of the ambient probe (*diagram 2*).

In the case of cost reduction in large-scale industrial plants, it is necessary to use a controlled, programmable regulation (*diagram 3*).

Diagram 1

Adjustment of delivery hot water temperature based on ambient temperature, timer and anti-freeze function for start-up if the ambient temperature drops below a certain value during shutdown.

Fig. 30

Diagram 2

Control of hot water supply temperature based on outdoor temperature with correction made by ambient temperature, programmable timer for weekly or night-time shutdown with anti-freeze function which must be activated in the eventuality that the ambient temperature, during shutdown, drops below a certain value (anti-freeze contact wiring parallel to the system on/off switch)

Diagram 3

Control for systems with variation of the programmed preheating hours based on the external temperature, which ensures in any condition the desired ambient temperature with night-time and holiday shutdowns. Regulations and controls of the temperature difference of the water and of the operating temperature.

If the system includes a series of rooms all with the same characteristics, it is possible to use a single three-ways valve with various ambient probes.

If instead it is necessary to heat rooms that do not have the same characteristics, it will be necessary to foresee several independently controlled circuits.

2.19 Methods of installation and dilation

After installing the suspension ties on the ceiling, the panels are lifted and hooked onto the brackets on the panels.

The fastening brackets are positioned on the panels at a distance of about 95 cm from one another (see *Fig. 2*). Normally, panels are hooked on every two meters. The following are examples of the distance between suspension points, creating only 6 meter modules (*Fig. 33*) and 6 and 4 meter modules (*Fig. 34*).

It is indispensable that the fastening system that is used allows adjustment in height of the ties so as to perfectly straighten the installation without bends.

Fig.33 Example of distance between suspension points 6 metres modules

Fig.34 Example of distance between suspension points 4 and 6 metre modules

While functioning, radiant panels behave in general like all tubes do when they have hot liquids flowing through them. Therefore they undergo varying amounts of dilation depending on their length and the temperature of the liquid. It is important that the suspension ties are long enough so that they do not prevent the panels from dilating (*Fig. 35* and *Table 13*).

Fig.35 Minimum length of suspension ties

Table 13 shows the minimum length of the ties based on the length of the panel and the difference between the average temperature of the heating fluid and the ambient temperature.

Tab.13 Minimum length o	f suspension ties (mm)
-------------------------	------------------------

Length of	Temperature difference (T_m-T_a)						
(m)	75 °C	100 °C	125 °C	150 °C	175 °C		
25	150	200	250	300	350		
50	300	400	450	550	650		
75	450	550	700	850	1000		
100	550	750	950	1100	1300		
150	850	1100	1400	1650	1950		
200	1100	1500	1900	2200	2600		

If ties of a sufficient length cannot be provided, it will be necessary to provide rigid supports with sliding rollers (*Fig. 36*).

Fig.36 Example of brackets with rollers

To avoid placing too much stress on the radiant panels, the connection tubes between the headers and the distribution network must be shaped in a way so as to absorb the dilation that takes place within the system.

To make air venting easier, the headers include threaded inserts of 3/8" for the installation of automatic vent valves.

2.20 Examples of ceiling fastenings

This manual provides useful information regarding the technical data of this product.

The following drawings show some examples of suspension systems for radiant panels.

Fig.38 Example of brackets with chains

Fig.39 Example of brackets with chains

Fig.40 Example of brackets hooked onto metal beams

Fig.41 Example of brackets on ribbed sheeting

Fig.42 Example of brackets with roller for panels prefabricated roofing

Fig.43 Example of brackets with roller for panels parallel to prefabricated roofing

Fig.44 Example of brackets with steel ties

2.21 Packaging

The panels are normally shipped stacked as packs of about 10 pieces, strapped and placed on suitable wood spacer pallets.

Protective strips of polyethylene are placed between the panels near the brackets.

Special packaging on request.

2.22 Assembly

SUSPENSION TIES

If the panels are to be ceiling mounted in buildings with a height of over four meters, the safest and most economical way of doing this is to use elevator platforms with a lifting capacity of over 400 kg which are able to reach the highest parts of the building.

WOOD

BOARDS

These elevator platforms can be rented nation-wide.

Start by securing the suspension ties to the roof. Tie rods are supplied. They may consist of chains, steel cables, threaded bars or other devices.

On the ground, position the insulation on the panels and secure it by positioning the provided plugs at about every two meters.

Once the insulation has been positioned, stack three or four modules, depending on the capacity of the elevator platform, and load them onto the platform using a forklift.

Move the panels up to the ceiling and attach them, one at a time, to the previously positioned suspensions. Once the entire panel length has been installed (composed of various modules of 4 and/or 6 meters), weld the head tubes of two adjacent modules. Once welding has been completed, the panel can be painted. The rest of the insulation is then positioned, and the joint cover is inserted and secured by means of clips. The joint cover adheres perfectly to the tubes and it also becomes a radiant surface.

The presence of shaped side on the sheet, the ease of laying the insulation, the head welding of the perfectly aligned tubes, and the simplicity of inserting the joint cover all reduce and simplify assembly times and therefore installation costs.

Laying and securing the insulating mat

3 ACCESSORIES

Anti-convections side skirts

Concealed side profiles for suspensions at variable intervals

They allow suspension ties to be attached anywhere on the panel. These profiles, anchored directly on the brackets, stiffen the panel so that the space between one anchor and the next can be increased. They remain completely concealed.

Joint covers for tube joints with sleeves for press-fitting

Headers for assembly with press-fitting

Insulation covers for heads of panels

Panels with tube of $\frac{1}{2}$ ", distance 111 mm with space for lamps

4 CERTIFICATIONS

4.1 EnergoAqua Eco radiant panels

Model	Number of test report as per European standard EN 14037-1,-2,-3	Nominal thermal emission ΔT = 55 K F (*) W/m	Characteristic equation exponent n (*)	Characteristic equation constant K (*) W/K
2/150 1⁄2"	DC203D12.1821	180	1,1752	1,6220
3/150 1⁄2"	DC203D12.1821 / 1824	244	1,1708	2,2415
4/150 ½"	DC203D12.1824	309	1,1663	2,8830
5/150 1⁄2"	DC203D12.1824 / 1827	370	1,1670	3,4450
6/150 ½"	DC203D12.1824 / 1827	431	1,1677	4,0040
7/150 1⁄2"	DC203D12.1824 / 1827	492	1,1684	4,5598
8/150 1⁄2"	DC203D12.1827	554	1,1691	5,1127
2/150 ³ ⁄4"	DC203D12.1820	190	1,1760	1,7056
4/150 ³ /4"	DC203D12.1823	318	1,1763	2,8516
6/150 ³ ⁄4"	DC203D12.1823 / 1822	449	1,1773	4,0143
8/150 ¾"	DC203D12.1822	581	1,1783	5,1687
4/100 1/2"	DC203D12.1819	278	1,1828	2,4278
5/100 1⁄2"	DC203D12.1819 / DC204D12.1977	347	1,1806	3,0599
6/100 1/2"	DC204D12.1977	413	1,1784	3,6753
7/100 1⁄2"	DC204D12.1977 / 1950	466	1,1802	4,1120
8/100 1/2"	DC204D12.1977 / 1950	516	1,1820	4,5234
9/100 1⁄2"	DC204D12.1977 / 1950	566	1,1837	4,9290
10/100 1/2"	DC204D12.1950	616	1,1855	5,3288
4/100 3⁄4"	DC204D12.1989	279	1,1843	2,4274
6/100 ³ ⁄4"	DC204D12.1985	415	1,1793	3,6744
8/100 ³ ⁄4"	DC204D12.1985 / 1949	534	1,1825	4,6691
10/100 ³ ⁄4"	DC204D12.1949	650	1,1857	5,6154

^(*) Nominal thermal emission as per EN 14037, based on tests carried out at the HLK laboratory at the University of Stuttgart. This emission, relative to

 ΔT =55 K is obtained from the equation:

 $\mathbf{F} = K \times \Delta T^{n}$

in which

K = characteristic equation constant

$$\label{eq:difference} \begin{split} \Delta T &= \mbox{ difference between the } \\ \mbox{ average temperature of } \\ \mbox{ the fluid and the ambient } \\ \mbox{ temperature } \end{split}$$

n = characteristic exponent equation

4.2 Insulating panel

Fiberglass wool treated with thermosetting resin, covered on the upper side with aluminium foil.

Its properties include:

- chemical inertia, immune to attack by parasites and rodents, does not decay or absorb humidity, resistant to even substantial temperature changes.
- The completely inorganic nature of fiberglass wool ensures its long-lasting performance.

Fire reaction

Class A1 according to test procedures of the EN 13501-1 normative

Thickness	40 mm
Thermal conductivity at an average temperature of 40°C	0,048 W/mK
Density	$14 \text{ kg/m}^3 \pm 10\%$
Thermal resistance	0,83 m² K/W

5 TECHNICAL SPECIFICATIONS

Panels with electro-welded tubes

Panels with tubes without welding

Certified ceiling mounted radiant panels with emission certified as per harmonized European standard EN 14037, composed of:

Plate in quality steel sheet metal, produced using mechanical stamp and profile process, so as to obtain deep grooves that wrap 2/3 of the outer surface of the tube therefore obtaining maximum downward radiation.

Wide range of models based on the number of tubes they are made up of, 7 models with a distance of 111 mm and 7 models with a distance of 150 mm, the entire range is available with tubes of $\frac{1}{2}$ or of $\frac{3}{4}$.

Length of 4 or 6 meters obtained by assembling sheets of 2 meters so as to prevent them from deforming and to contain sliding between tubes and metal sheets within limits of elasticity.

Electro-welded steel **tubes** with a thickness of 1.5 mm made from laminated strip, diameter ¹/₂" (*or* ³/₄"), electronically tested and certified at the steelworks, suitable for liquids at a temperature of up to 120°C and operating pressures of up to 6 bar.

Steel **tubes** without welding (UNI 8863)) with a diameter of ½" (*or* ¾"), suitable for liquids at a temperature of up to 180°C and operating pressures of up to 16 bar.

- **Suspension brackets** located about one every meter to stiffen the structure, composed of rectangular tube that is especially flat so as to allow continuity and adherence of the insulation to the sheet metal, thus permitting the integrity of thermal insulation.
- **Side edges** with special profile obtained from the plate, thus extending the radiant surface. These contain and conceal the insulating mat.

Head headers welded to tubes and tested in the factory for the required pressures.

- Fiberglass wool **mat** with a thickness of 40 mm, density 14 kg/m³, covered on the upper face with aluminium foil, fire reaction class A1 as per EN 13501-1 normative.
- **Joint covers** to be positioned on joints between modules, with the same profile as the main metal sheet, to be inserted by pressure and fastened from underneath with clips.
- **Painting** carried out after washing, degreasing, and phosphating by immersion in tub containing water-soluble enamel with non-toxic epoxy powder resins, followed by oven baking. The standard colour is RAL 9016 white; other RAL colours are available on request.

This paint resists up to 170°C in systems supplied with water and 140°C in steam systems. For use at higher temperatures, there are specific paints.

EAE-TECH.MAN20.05.19-01EN Rights to modification reserved

The technical, constructional and dimensional data are not binding and may be modified with no advance notice. This manual may not be reproduced, wholly or in part, without written authorization in advance from Energotech AB.

Energotech AB | Firmagatan 5 | SE-213 76 Malmö, Sweden | +46 40 866 90 | info@energotech.se | www.energotech.com